Abracadabra!

One of the pleasures of working at the National Museum of American History is discovering the connections between the collections and research. A good example is my recent experience with Ajeeb, the famous chess-checker playing automaton. I learned about this amazing automaton while processing the William L. Bird Holidays on Display Collection. I was immediately smitten with Ajeeb, a ten-foot high, wax and papier-mâché mechanical wonder that won most every game of chess and checkers it played.

Ajeeb, also known as “The Egyptian,” was conceived of by Charles Edward Hooper of England in 1867. First displayed at the Crystal Palace in London, Ajeeb was brought to the United States in 1886 and featured at the Eden Museé, a New York City amusement place which opened in March 1884. Ajeeb is a descendant of earlier chess-checker playing automatons. In 1769, Wolfgang von Kempelen of Austria introduced the Mechanical Turk, which served as the inspiration for Ajeeb. Other automatons with similar abilities and names like Mephisto, Hajeb, and As-Rah also appeared. While the Ajeeb enjoyed a long stint at the Eden Museé (almost forty years), he was not the only Ajeeb on the circuit. Martinka & Company of New York, America’s oldest magic shop sold a chess-playing automaton in its 1898 and 1906 catalogs. Although we don’t know the price or sales figures, the idea that individual consumers could purchase their own Ajeeb is delightful.

The Ajeeb’s chess and checker playing prowess was greatly doubted and debated. Many believed Ajeeb was operated from an adjacent room; others thought that he had a magic brain. Indeed, inside the Ajeeb’s base, cleverly concealed by panels displaying complex machinery, were hidden operators maneuvering the arms, and carefully choreographing every move. The greatest wonder ever invented was an elaborate hoax—a great illusion that entertained crowds all over the world.

Lithographed trade card from Eden Museé, 1896. (AC0060-0000003-01)

Lithographed trade card from Eden Museé, 1896. (AC0060-0000003-01)

Months after discovering the Ajeeb in the collections I was talking with a colleague who was researching the early history of mathematical games played on computers. I mentioned my discovery and she shared my enthusiasm for this mysterious automaton. Several months later I found Ajeeb elsewhere in our collections. While examining a box about vending machines in the Warshaw Collection of Business Americana I found the Ajeeb on a trade card from the Eden Museé. To learn more about our collections, visit the Archives Center website.

Sources

“Eden Museé Faces Bankruptcy,” New York Times, p. 17, June 8, 1915.

Ensmenger, Nathan. Is chess the drosophila of artificial intelligence? A social history of an algorithm.  Social Studies of Science, 42 (1), pp. 5-30, 2012.

Kobler, John. “Where Are they Now? The Pride of the Eden Musee,” New Yorker, November 20, 1943.

[Trade catalogs from Martinka & Co.], January 27, 1898.

Set Em’ Up! Knock Em’ Down! Bowling’s Automated Pin Technology

According to the United States Bowling Congress (the national governing body for bowling as recognized by the United States Olympic Committee), 71 million people bowled at least once in 2010 and bowling is the number one participation sport in the United States. I began bowling at a young age, thanks to my parents who bowled in a weekly league at alleys in Northern Wisconsin and Upstate New York. In fact, my father and uncle were pin setters (aka “pin boys”) at the Lakeview Recreation (Chicago) and the Red Ray Lanes (Kewaunee, Wisconsin) respectively. And, no one “rolled” quite like my mother. She was so good that she even appeared, briefly although unsuccessfully, on Rochester television’s Bowling for Dollars. I recently rolled a few games and began thinking about how mechanization changed bowling. The AMF Automatic Pinspotter Records at the Archives Center details part of this history. The AMF Records allowed me to learn about part of the story—bowling’s “electric brain.”

Letterhead of the Ten-Pinnet Company, automatic bowling alleys, 1911.

Letterhead of the Ten-Pinnet Company, automatic bowling alleys, 1911. (AC0060-0001482)
The Tin-Pinnet Company of Indianapolis introduced an automatic bowling alley circa 1911 boasting the game was healthy, thrilling and automatic. Owners could purchase the alley (38 to 50 feet long), easily set it up in a space, and make a profit.

The game of bowling has changed over the years, thanks in large part to technology. Automatic pin setting technology was the first of many advances that would transform the game of bowling. Other advances, including the automatic ball return, lighted pin indicator, automatic scoring, and the electric-eye foul line violation detection, made the game more efficient and caused bowling as an industry to thrive.

Brochure, "The Automatics are Here..." AMF Pinspotter's Inc., [circa early 1950s]

Brochure, “The Automatics are Here…” AMF Pinspotter’s Inc., [circa early 1950s] (AC0823-0000001)

Brochure, "The Automatics are Here..." AMF Pinspotter's Inc., [circa early 1950s], inside spread. (AC0823-0000001-01)

Brochure, “The Automatics are Here…” AMF Pinspotter’s Inc., [circa early 1950s], inside spread. (AC0823-0000001-01)

Bowling is simple right? Throw a ball weighing approximately six to sixteen pounds down a lane and knock down ten pins. If you’re lucky, you’ll avoid throwing a gutter ball and knock down a few pins. Then, the pins you knocked down will disappear, the remaining ones will be reset and your ball will appear magically in the ball return and you can try again. This wasn’t the case with bowling prior to 1946. The technology of the automatic pin setting machine was slow to catch on. Pin setting apparatuses, such as John Kilburn’s 1908 invention (US Patent 882,008), were early attempts to mechanize the process. Before mechanization, humans did the pins setting, typically young men. Not only was this terribly inefficient, the work was tiring, gritty, and low-paid. Subsequent patents by Kilburn in 1911, 1917, and later years were not adopted, but in 1941, Gottfried “Fred” Schmidt of Pearl River, New York, patented a bowling pin setting apparatus (US Patent 2,208,605) and a suction lifter (US Patent 2,247,787). As Schmidt noted in his patent application, previous apparatuses did not work satisfactorily because they “could not accurately spot the pins or engage with the pins left standing.” Schmidt would know.  A bowler himself, he received twelve patents for bowling pin setting apparatuses. All of Schmidt’s patents were assigned to the Bowling Patents Management Corporation, which was later purchased by American Machine & Foundry Company (AMF) thus giving AMF the patent rights to manufacture and use the technology. AMF was no stranger to diversification or tackling mechanization projects. In 1900, the company made tobacco manufacturing machinery; in the 1920s, bread wrapping machines; and in the 1930s necktie making machines. Bowling fit right in with their plans.

Photograph, American Bowling Congress Tournament, Fort Worth, Texas, 1957 March. (AC0823-0000002)

Photograph, American Bowling Congress Tournament, Fort Worth, Texas, 1957 March. (AC0823-0000002)

Photograph, American Bowling Congress Tournament (showing machinery), Fort Worth, Texas, 1957 March. (AC0823-0000003)

Photograph, American Bowling Congress Tournament (showing machinery), Fort Worth, Texas, 1957 March. (AC0823-0000003)

The pinspotter weighed 2,000 pounds and operated at a speed of seven to ten games per hour—depending on the speed of the bowler. The machine had eight principle assemblies: the cushion (stops the ball); the ball lift (carries the ball high enough to allow a gravity return); the sweep (removes deadwood from the alley); the carpet (carries pins from the alley into the pin elevator); the pin elevator (wheel that carries the pins and delivers them to the distributor); the distributor (takes pins from the elevator wheel and delivers them to the table); the table (location where the pins are spotted for the next frame); and the electrical system (selects the cycle for the machine to perform). After a bowler released the ball and knocked pins down, the rack above the pins came down and using a suction cup, picked up any pins left standing.  A bar then dropped down and swept away the fallen pins (aka “deadwood”). The fallen pins then moved onto a pit conveyor belt and were fed into a moving cylinder that carried them to the top of the machine. The pins, still held in place by suction were reset onto the alley and the bowler’s ball was returned to them via a conveyor belt mechanism. Finally, pins were set back (spotted) into place and the process could begin again.

Ticket for Bellevue Bowling Club Masquerade, 1900 January 20 (AC0060-0001483-01)

Ticket for Bellevue Bowling Club Masquerade, 1900 January 20 (AC0060-0001483-01)

Ticket, Bellevue Bowling Club Masquerade, 1900 January 20 (AC0060-0001483-02)

Ticket, Bellevue Bowling Club Masquerade, 1900 January 20 (AC0060-0001483-02)

In 1946, AMF unveiled the new pin setter, known as the Automatic Pinspotter (Model 82-30), to the public during the American Bowling Congress (ABC) Tournament in Buffalo, New York.  AMF was unable to demonstrate their machine at the tournament itself, so they set-up their new machine in a nearby building to promote its efficiency. Not until 1952 would the Pinspotter be ready for prime time and have finally gained acceptance. By 1958, AMF had leased 40,000 pinspotters, truly mechanizing bowling centers across the United States.

So, if you haven’t bowled lately, get out there and roll a few games!

Sources

New York Times, “40,000th Pinspotter: American Machine & Foundry Marks Bowling Aid Leasing,”  June 22, 1958, page F2.

New York Times, “Diversification for Growth and Stability…Horizons Unlimited for AMF—Serving the Consumer, Industry and Defense,” November 4, 1956, page 376.