Remembering Apple’s “1984” Super Bowl ad

Today marks the 30th anniversary of Apple’s famous “1984” television ad that aired on January 22, 1984 during the third quarter of the Super Bowl XVIII between the Los Angeles Raiders and Washington Redskins. Historian Eric Hintz describes how the “1984” ad and the introduction of the Apple Macintosh were key milestones both in the history of computing and the history of advertising.

The Super Bowl is a cultural event that attracts the attention of more than just football fans. In 2013, Super Bowl XLVII was the third most watched telecast of all time, with an average viewership of 108.7 million people. With so many eyeballs tuned in, advertisers bring out some of their best work and casual fans tune in for the groundbreaking TV commercials as much as for the game. Who could forget Steelers Hall of Famer “Mean” Joe Greene selling Coca-Cola (1979) or the Budweiser guys coining “Wassuuuup?!?” (2000) as everyone’s new favorite catchphrase? However, Apple’s “1984” ad during Super Bowl XVIII is arguably the most famous Super Bowl commercial of all time.

In 1983, the personal computing market was up for grabs. Apple was selling its Apple II like hotcakes but was facing increasing competition from IBM’s PC and “clones” made by Compaq and Commodore. Meanwhile, Apple, led by Steve Jobs, was busy developing its new Macintosh computer. Remember that in 1983, most businesses and governments still employed large, expensive, and technically intimidating mainframes. And while the first personal computers of the early 1980s were smaller and less intimidating, they still featured black screens with green text-based commands like C:\> run autoexec.bat.

Drawing inspiration from the pioneering Xerox Alto and improving on the underperforming Apple Lisa, Jobs and the Apple team built the Apple Macintosh with several revolutionary new features we now take for granted. A handheld input device called a “mouse.” A graphical user interface with overlapping “windows” and menus. Clickable pictures called “icons.” Cut-copy-paste editing. In short, Jobs and his team were creating an “insanely great” personal computer that was intuitive and easy to use—one he hoped would shake-up the PC market. At the same time, Apple had recently lured marketing whiz John Sculley away from Pepsi to be the firm’s new chief executive. Sculley, who had masterminded the “Pepsi Generation” campaign, raised Apple’s ad budget from $15 million to $100 million in his first year.

Apple Macintosh (“classic” 128K version), 1984, catalog number 1985.0118.01, from the National Museum of American History.

Apple Macintosh (“classic” 128K version), 1984, catalog number 1985.0118.01, from the National Museum of American History.

Apple hired the Los Angeles advertising firm Chiat/Day to launch the Macintosh in early 1984; the account team was led by creative director Lee Clow, copywriter Steve Hayden, and art director Brent Thomas. The trio developed a concept inspired by George Orwell’s dystopian novel, 1984, in which The Party, run by the all-seeing Big Brother, kept the proletariat in check with constant surveillance by the Thought Police. In the ad, IBM’s “Big Blue” would be cast as Big Brother, dominating the computer industry with its dull conformity, while Apple would re-write the book’s ending so that the Macintosh metaphorically defeats the regime. To direct the commercial, Chiat/Day hired British movie director Ridley Scott who’d perfected the cinematic look and feel of dystopian futures in Alien (1979) and Blade Runner (1982). The 60-second mini-film was shot in one week at a production cost of about $500,000. Two hundred extras were paid $125 a day to shave their heads, march in lock-step, and listen to Big Brother’s Stalinist gibberish. Shot in dark, blue-gray hues to evoke IBM’s Big Blue, the only splashes of color were the bright red running shorts of the protagonist, an athletic young woman who sprints through the commercial carrying a sledgehammer, and Apple’s rainbow logo. The commercial never showed the actual computer, but ended with a tease: “On January 24th, Apple Computer will introduce Macintosh. And you’ll see why 1984 won’t be like ‘1984.’”

Scenes from Apple’s “1984” Super Bowl advertisement.  From Folklore.org.

Scenes from Apple’s “1984” Super Bowl advertisement. From Folklore.org.

1984Girl_fromFolkloreDotOrg

When shown the finished ad in late 1983, Apple’s board members hated it. Sculley, the Apple CEO, instructed Chiat/Day to sell back both the 30 and 60-second time slots they’d purchased from CBS for $1 million, but they were only able to unload the 30 second slot.  Apple was faced with the prospect of eating the $500,000 production costs of an ad that could really only air during calendar year 1984, so it swallowed hard and let the ad run once during the third quarter of the Super Bowl. Some 43 million Americans saw the ad, and when the football game returned, CBS announcers Pat Summerall and John Madden asked one another, “Wow, what was that?”

The ad, of course, was a sensation. The commercial’s social and political overtones held particular resonance in the mid-1980s, as the United States and Soviet Union were still engaged in an ideological Cold War. And, like Lyndon Johnson’s famous “Daisy” ad from the 1964 presidential campaign, the ad aired only once in primetime, but was replayed again and again on the network news that evening as the ad itself became a buzz-worthy source of free publicity. But even the mystique of the single airing wasn’t entirely true. Chiat/Day had quietly run the ad one other time, at 1 a.m. on December 15, 1983 on KMVT in Twin Falls, Idaho, so that the advertisement qualified for the 1983 advertising awards.  As expected, the ad won several prestigious awards, including the Grand Prize at the Cannes International Advertising Festival (1984) and Advertising Age’s 1980s “Commercial of the Decade.” But the ad’s most enduring legacy is that it cemented the Super Bowl as each year’s blockbuster moment for advertisers and their clients.

While the ad aired during the Super Bowl on January 22, it merely pointed to Macintosh’s official debut two days later. On January 24, 1984, Apple held its annual shareholders meeting at the Flint Center auditorium on the campus of De Anza College, just a block from Apple’s offices in Cupertino, California. After dispensing with the formalities of board votes and quarterly earnings statements, the real show began. Steve Jobs walked on stage in a double-breasted suit and bow tie and rallied the troops by tweaking his chief rival: “IBM wants it all and is aiming its guns on its last obstacle to industry control, Apple.  Will Big Blue dominate the entire computer industry, the entire information age?  Was George Orwell right?”

Jobs then presented perhaps the greatest new product demonstration in history. Jobs walked over to a black bag, unzipped it, and set up the Macintosh to wild applause.  Then Jobs inserted a floppy disk and started the demonstration of the Mac’s windows, menus, fonts, and drawing tools, all set to the stirring theme from Chariots of Fire. Then, the Mac spoke for itself: “Hello, I am Macintosh…”

So when you watch the Super Bowl on February 2 this year, it’s possible that the ads will overshadow the game. And for that you can thank Apple’s Macintosh, Chiat/Day and “1984.”

An International Spark!Lab Workshop

We recently hosted colleagues for a two-week workshop on the process of developing and prototyping Spark!Lab activities. We also arranged trips to visit several other hands-on spaces at the Smithsonian, to show the breadth of ways to approach this sort of programming.

Our Ukrainian colleagues Nina and Zhenya.

Our Ukrainian colleagues Nina and Zhenya.

This was a really wonderful opportunity for the folks in the workshop, as it was a diverse crowd: staff from both Art Arsenal in Kyiv, Ukraine, and the Shenandoah Valley Discovery Museum in Winchester, Virginia, joined us. This may seem like an odd pairing, geographically, but both museums are in a crucial part of their strategic development, and so came to us at a good time for inspiration and learning.

Prototyping a music activity with visitors.

Prototyping a music activity with visitors.

I had two favorite moments over the course of our time together. The first was developing and prototyping an activity on the topic of contemporary art; this was an area of particular interest for our Ukrainian colleagues. Through brainstorming, we determined that contemporary art is based on emotion and beauty. We agreed on a handful of emotions, went shopping for random materials and gathered recyclables from our office, and put the activity together. It was quite a success with visitors!

Two pieces of contemporary art made by visitors  - ‘hunger’ and ‘sadness’, left to right.

Two pieces of contemporary art made by visitors – ‘hunger’ and ‘sadness’, left to right.

My second favorite part was our trip to ArtLab+ at the Smithsonian’s Hirshhorn Museum and Sculpture Garden. ArtLab+ is a drop-in art space for teens, with opportunities for them to gain expertise in computer programs, technical equipment, and much more. It’s an inspiring space that really resonated with our colleagues.

ArtLab

I’m so glad we had the chance to share our expertise in developing Spark!Lab activities, prototyping, and much more. I know we also learned a great deal from our colleagues! We’re looking forward to seeing how they implement what they learned, and eager to see how it benefits their work.

A Day at the Armory: Part II

One of the most exciting aspects of historical research is the thrill of finding a truly great primary source. Recently, while researching Hartford’s industrial history for our Places of Invention exhibition, I uncovered a remarkable first person account of the inner working of Samuel Colt’s Hartford Armory from 1857. Fortunately, copyright protection has expired on such an old piece, so I thought it would be fun to reprint it here. The original article is quite long so I have cut and provided a digest of certain sections, while retaining the descriptions of the factory and grounds. Enjoy Part II…and go back to read Part I.

Part II: “Repeating Fire-Arms:  A Day at the Armory of Colt’s Patent Fire-Arms Manufacturing Company,” United States Magazine, vol. 4, no. 3 (March 1857): 221-249.

With the exception of the steam engine and boilers, a majority of the machinery was not only invented, but constructed on the premises. When this department was commenced, it was the intention of the Company to manufacture solely for their own use. Some months since, applications were made by several foreign Governments to be supplied with machines and the right to operate them. After mature deliberation, it was concluded to supply orders, and on the day of our visit we saw a complete set of machinery for manufacturing fire-arms, that will shortly be shipped to a distant land. The Company have now determined to incorporate this manufacture as a branch of their regular business. The machine shop is the lower floor of the front parallel; its dimensions are 60 by 500 feet; it is supplied with power and hand tools of every desired kind, all of the most approved construction.

Drawing of A Colt workman at a jigging machine, 1857.

Figure 4: A Colt workman at a jigging machine. The machine featured a revolving wheel with various metal cutting tools attached so the machinist could perform several operations on a single work piece. From United States Magazine, 1857.

Another of the numerous inventions of Colonel Colt is the Metallic Foil Cartridge, a contrivance that always insures “dry powder’ to the possessor. Tin foil, cut in the required shape, is formed in an inverted cone, which is charged with gunpowder; the ball is oval, with a flat end; a circle is pierced near the edge, on this flat end, to receive the edge of the foil; on the cone and ball being brought together, the joint is closed by pressure; they are then inclosed in paper wrappers, so arranged that this covering can be instantly removed when the cartridge is about to be used. The whole operation is completed so perfectly that the cartridge is entirely impervious to water, as by experiment they have repeatedly been fired after having been immersed for hours. Owing to the peculiar shape of the bore of the nipple in Colt’s firearms, the fire from the percussion caps readily penetrated the foil, without pricking.

They are manufactured in a building erected expressly for the purpose, situated about half a mile south of the armory. No fire is allowed in any part of the works, heat being furnished by steam generated in an out-building. Nearly the whole labor here is performed by females, about thirty of whom were at work during our visit – the foreman, engineer and charger making the complement of employees.

Drawing of women assembling Colt's patented gunpowder cartridges, 1857.

Figure 5: Women doing the dangerous work of assembling Colt’s patented gunpowder cartridges at the Cartridge Works. From United States Magazine, 1857.

The principal officers of the company consist of Colonel Colt as President; E. K. Root, Esq., Superintendent, and Luther P. Sargeant, Esq., Treasurer and Secretary; besides these, there is a chief to each department – Mr. Horace Lord being master workman in the armory. Colonel Colt has been particularly fortunate in the selection of his immediate associates; they are all men of mark. Mr. Root, to whom we are indebted for a few hours of valuable instruction, is one of the most accomplished, practical and scientific mechanics of the day; although only in the prime of life, he has established a most enviable position, and his opinions on mooted questions of mechanism are eagerly sought after, even by the principals of some of our most extensive city establishments. Colonel Colt informed us that since their first connection all his views had been most ably seconded and put in practical operation by Mr. Root. In fact, the whole manufacture of every description is under his immediate direction.

Although so much care and attention have been exercised in perfecting the armory, its accessories and products, yet the general welfare of the employees has not been neglected; most extensive arrangements for their comfort and convenience are in the course of rapid completion. And we may here remark that they are deserving of such especial favor; as a body they are mostly young men, many of them having commenced their business life in the establishment. It was, in a measure, necessary to educate men expressly for the purpose, as the manipulation required is not exclusively that of the gunsmith, or of the machinist, but a combination of both of these callings. Taken as a whole, we found them decidedly a reading and thinking community, and we venture the assertion, that it would be difficult to produce a counterpart of mental capacity in the same number of mechanics employed in a manufactory. That they are well compensated for their services is evinced from the fact of the pay-roll amounting to from $1,000 to $1,200 per day.

The grounds around the armory have been laid out in squares of 500 feet each by streets 60 feet wide; upon these squares are being erected commodious three-story dwellings. Sufficient for about eighty families have already been finished, and are occupied by the employees; the operations will be continued until all who desire are accommodated. These houses have all the conveniences of city life. Gas works, of sufficient capacity to supply as large a population as can occupy the area, have already been erected and put in operation. Attached to the engine in the main building is a “cam pump,” which raises the water from the Connecticut to a reservoir on the hill beyond, from which it is distributed, by pipes, to the armory, dwellings, etc….One of the buildings is a beautiful structure known as Charter Oak Hall – so named from its being located on the same avenue as the venerable and time-honored tree, which for centuries braved the storm, and from a singular incident became celebrated in our colonial history. This hall is employed by the operatives for lectures, debates, concerts, balls, etc. The festive occasions are enlivened with music from a band organized from their midst – the instruments, which are most excellent, having been furnished though the liberality of Colonel Colt. A public park, fountains, etc., are in the plans, all of which are being successfully executed.

On the hill overlooking the whole is the palatial residence of the proprietor. It is really a superb edifice, the main building being fifty by one hundred feet; it is in the Italian villa style – the ground and out buildings being on the scale which would naturally be expected of a man of his extended views and liberal taste.

The marvelous extension of use of Colonel Colt’s revolver within a few years, in Europe, and over parts of Asia – the establishment by the British Government of an armory of its own at Enfield, for its manufacture – the establishment of another by the Russian Government at Tula for the same manufacture – the call upon Colonel Colt, aided in part by some other American establishments, to provide all the important machinery for these new armories – these facts and hosts of testimonials from all parts of the world, and from the highest sources, attest the unrivaled excellence of the repeating arms of Colonel Colt, and rank him among the most remarkable inventors of the world.

A Day at the Armory: Part I

One of the most exciting aspects of historical research is the thrill of finding a truly great primary source. As you probably recall from History 101, a primary source is a document, report or set of observations written contemporaneous with the period you’re studying.  The best primary sources are first-person accounts—these reports from the past give historians our best evidence of what things were really like in a given place and time.

Recently, while researching Hartford’s industrial history for our Places of Invention exhibition, I uncovered a remarkable first person account of the inner working of Samuel Colt’s Hartford Armory from 1857. The observations of the unnamed reporter and (pre-photographic!) renderings by artist Nathaniel Orr provide a rich sense of life in Coltsville and on the factory floor.

Fortunately, copyright protection has expired on such an old piece, so I thought it would be fun to reprint it here. The original article is quite long so I have cut and provided a digest of certain sections, while retaining the descriptions of the factory and grounds. Enjoy!

“Repeating Fire-Arms:  A Day at the Armory of Colt’s Patent Fire-Arms Manufacturing Company,” United States Magazine, vol. 4, no. 3 (March 1857): 221-249.

Eric’s note: The first part of the article describes Colt’s invention and patenting of the revolver in 1836.  It then describes Colt’s first failed efforts to build a successful business in Paterson, NJ.  In 1847, after correcting some of the defects in his original design, Colt received an order for 1000 revolvers from Captain Samuel Walker of the Texas Rangers.  Colt contracted with Eli Whitney, Jr. of Hamden, CT to manufacture the revolvers to his specifications.  The proceeds from this and subsequent orders allowed Colt to establish a temporary factory in his native Hartford, then build his permanent factory in 1855.  The observer from United States Magazine, writing in 1857, describes the two-year old armory.   

[The orders from Colt’s improved revolver enabled him to] …transfer his enterprise to Hartford, his own native town, upon the banks of the Connecticut, where he has at last succeeded in founding an armory, the most magnificent of its kind, it may be safely alleged, in the known world – an establishment, built in the first place by damming out – in a project deemed by many, in its inception, almost superhuman – the waters of the mighty Connecticut in their maddened freshet time – which incorporates, in buildings and machinery, a full million of dollars – which give employment to from six to eight hundred men inside the main building, and to numerous hands outside, – which dispenses daily, in wages alone from one thousand to fifteen hundred dollars, and manufactures, year by year, from seventy-five to one hundred thousand arms…

…Within the corporate limits of the City of Hartford, immediately below the Little or Mill River, is a section land, containing about 250 acres, which, owing to its formerly being submerged at the periodical freshets of the Connecticut River, was available at certain seasons only, and then but for grazing. Colonel Colt selected and purchased this spot as his field of operations. His first move was to erect an embankment, or dyke, by which the waters of the Connecticut were entirely and permanently excluded; thus reclaiming the land for building purposes or tillage, as might be desired. This embankment is about two miles long, averaging over one hundred feet wide at the base, and over forty feet in width at the top, and from ten to twenty feet in height. It is built in the most substantial manner, the sides being covered with osier, both for protection and ornament, and for material for his willow works factory, for which he has brought fifty skilled craftsmen from Germany and plans to build for them Swiss-chalet style houses called the Potsdam village. From the smoothness of the road on the dyke, and the beautiful scenery in the vicinity, the dyke has become the fashionable drive of the citizens.

Drawing of Colt Armory from across the Connecticut River, 1857.

Figure 1. Armory of the Colt’s Patent Fire-Arms Manufacturing Company in Hartford, from across the Connecticut River. Notice the earthen work dykes secured by osier (willow) trees on the opposite river bank. From United States Magazine, 1857.

That the operations might be on the most extended scale, and also that the proprietor might have the undivided exertions of his principal assistants in the manufacture, an association was now formed under a special law from the state, styled “Colt’s Patent Fire-arms Manufacturing Company.” The stockholders in the company are few, Colonel Colt being largely the principal, and the others the heads of the various departments of the business. The capital is $1,250,000; the whole of which is invested in the buildings, tools, machinery, raw materials, etc….The new armory…was finished and operations commenced in it in the Fall of 1855.

The motive power is located about in the center of the main building. It consists of a steam engine – cylinder, 36 inches in diameter, 7 foot stroke, fly-wheel 30 feet in diameter, weighing 7 tons. This engine, which is rated at 250 horse power, is supplied with the well-known “Sickel’s Cutoff,” which the superintendent and engineer speak of as the most useful and important addition to the steam-engine since the days of Watt. The steam is furnished from two cylindrical boilers, each 22 feet long and 7 feet in diameter. The power is carried to the attic by a belt working on the fly-wheel; this belt is 118 feet long by 22 inches wide, and travels at the rate of 2,500 feet per minute.

Fully appreciating the great interest manifested by our readers in descriptions of this kind, we will now proceed to conduct them through the interior of this immense industrial pile, and on the way we will endeavor to explain, as understandingly as possible, the various processes of the manufacture, from the raw metal and wood, to the complete and effective arms familiarly known as Colt’s Revolvers.

Leaving the office we cross the bridge, pass down through the machine shop, engine room, etc., to the rear parallel, an apartment 40 by 50 feet square, the center of which is appropriated as the store-room for iron and steel. Large quantities of these materials, in bars and rods, are stored here in charge of a responsible party, whose duty it is to fill the orders from the contractors, and render an accurate statement of such deliveries to the main storekeeper’s department. This latter system is universal throughout the establishment – thus the materials of all kinds can be readily accounted for, no matter what their state of transposition.

Drawing of the furnaces and anvils of Colt Armory's forging shop, 1857.

Figure 2: The furnaces and anvils of Colt’s forging shop. From United States Magazine, 1857.

We now follow them to the armory proper, which, in the first place, is the second story of the front parallel. This is probably not only the most spacious, but the best arranged and fitted workshop extant. We fully understand this to be a broad and sweeping assertion, yet we have an abundance of competent authority to back the opinion. On first entering this immense room, from the office, the tout ensemble is really grand and imposing, and the beholder is readily impressed with an exalted opinion of the vast mechanical resources of the corporation. The room is 500 feet long by 60 feet wide, and 16 feet high. It is lighted, on all sides, by 110 windows that reach nearly from floor to ceiling; it is warmed by steam from the boilers – the pipers being under the benches, running completely around the sides and ends; there are the perfect arrangements for ventilation, and sufficient gas burners to illuminate the whole for night-work. Running along through the center is a row of cast-iron columns, sixty in number, to which is attached the shafting – which here is arranged as a continuous pulley – for driving the machines, as close together as possible, only allowing sufficient space to get around and work them. The whole of this immense floor space is covered with machine tools. Each portion of the fire-arm has its particular section. As we enter the door the first group of machines appears to be exclusively employed in chambering cylinders; the next turning and shaping them; here another is boring barrels; another group is milling the lockframes; still another is drilling them; beyond are a score of machines boring and screw-cutting the nipples, and next to them a number of others are making screws; here are the rifling machines, and there the machines for boring rifle-barrels; now we come to the jigging machines that mortice out the lock-frames; and thus it goes on all over this great hive of physical and mental exertion.

Drawing of the second floor of Colt’s East Armory, showing dozens of machine tools and operators, powered by overhead pulley, belts, and shafting, 1857.

Figure 3: The second floor of Colt’s East Armory, showing dozens of machine tools and operators, powered by overhead pulley, belts, and shafting. From United States Magazine, 1857.

As soon as completed the different parts are carried to the story above, which, with the exception of the machinery and the columns through the center, is an exact counterpart of the room below. It is designated the Inspecting and Assembling Department. Here the different parts are most minutely inspected; this embraces a series of operations which in the aggregate amount to considerable; the tools to inspect a cylinder, for example, are fifteen in number, each of which must gauge to a hair; the greatest nicety is observed, and it is absolutely impossible to get a slighted piece of work beyond this point.

The finished arm is laid on a rack, ready for the prover; of course many others accompany it to the department of this official, which is located in the third story of the rear building. Here each chamber is loaded with the largest charge possible, and practically tested by firing; after which, they are wiped out by the prover and returned to the inspection department. The inspectors again take them apart, thoroughly clean and oil them, when they are for the last time put together and placed in a rack for the final inspection. This is done by Mr. William Tuller, a gentleman who has been in the constant employment of Colonel Colt since the manufacture commenced in Hartford. The parts having been so thoroughly examined and tested, it would seem that this last inspection was scarcely necessary; but, after a short observation, we saw several laid aside. Taking up one with a small mark on the barrel, “Why do you reject this?” we inquired. “Pass that to-day, and probably much larger blemishes would appear to-morrow,” replied Mr. T. The order from the Principal is perfection; and a small scratch in the bluing or varnish is sufficient to prevent the arm passing. The finished arm is now returned to the store room; from whence, after being papered, they are sent to the wareroom – situated in the basement of the office building; from this they are sent to nearly every portion of the habitable globe.

In round numbers it might be stated that supposing the cost of an arm to be 100; of this the wages of those who attended to and passed pieces through the machines was 10 per cent, and those of the best class workmen engaged in assembling the weapons was also 10 per cent, thus leaving 80 per cent for the duty done by the machinery.

Stay tuned for Part II of the article…

Sol’s Place

We talk a lot about “place” of invention these days in the Lemelson Center. Center staff is exploring this topic for an upcoming exhibit titled Places of Invention. The exhibit will take visitors on a journey through time and place to meet people who lived, worked, played, collaborated, adapted, and took risks in order to solve problems and create new solutions. But what does a place of invention look like? Examining the life and work of Solomon “Sol” Adler (1901-1989), an American-born inventor of sewing machines, provides a glimpse of one invention space.

Adler’s personal papers, which are housed at the National Museum of American History’s Archives Center, contain numerous sketches and drawings demonstrating his precision as a draftsman. They provide insight into the drawing abilities he later used to prepare patent drawings. Adler also enjoyed metalworking. An expert machinist and toolmaker, his home workshop boasted a geared lathe, tilling head machine, drill press, bench grinder, and an assortment of hand tools. Living in New York City did not afford much room for a home workshop—some of this equipment and tools was set-up in closets! Adler, who devoted most of his inventive life to improving sewing machines, moved to Japan in 1954 to work for Brother International Corporation (BIC), a subsidiary of the Nippon Company, as a consultant. At BIC, Adler solved certain design and operational problems the company was having in developing a zigzag sewing machine for sale in the United States. While in Japan, Adler created this pencil sketch of his workshop, circa 1955. It depicts his vision for his “place of invention” and how it would be organized.

Sketch of Sol Adler’s workshop, circa 1955.

Sketch of Sol Adler’s workshop, circa 1955. (AC1157-0000003)

The same precision Adler used in his drawings is evident in his workshop. Tools and containers are precisely placed and labeled indicating he appreciated the economy of the space and how to make it function efficiently. Note Adler’s use of cigar boxes to organize his many and diverse machine parts. And, Adler (noted as “A” on the drawing) intended to share his place of invention and collaborate with someone named “Micri.” I don’t know if this workshop was ever realized, but Adler certainly captured it well on paper. Visit our website for more stories about invention and to learn more about Places of Invention.

Innovating New Traditions

As Thanksgiving approaches, our thoughts naturally turn to traditions—national traditions like the Macy’s Thanksgiving Day Parade and our own personal traditions, which in my family means kielbasa and apple pie, going to the local Christmas tree farm, and my family members pretending to be shocked when I decline a serving of carrots for the 28th year in a row. (And, of course, my mother’s mashed potatoes, over which I rhapsodized in a previous post.)

Woodcut of a turkey

Woodcut, The Marchbanks Calendar–November by Harry Cimino. Smithsonian American Art Museum.

We all have traditions, but where did they come from? When we deep-fry the turkey or add a spiral ham to the menu, it may not seem particularly innovative. But the technology behind these yummy traditions had to come from somewhere. While doing some Thanksgiving-inspired Googling, I came across this fun video from History on the invention of deep-fried turkeys, turduckens, and honey baked hams:

While we may not know who invented the deep-fried turkey, we can take a look at Harry Hoenselaar’s patent (#2470078A) for an “apparatus for slicing ham on the bone.” Hoenselaar’s invention was ingeniously created out of various objects found around his home—a pie tin, brackets, a hand drill, and a broom handle, to name a few. The patent application reads:

In the meat industry there is a large market for sliced meats, particularly for ham slices, but the bone construction and the shape of a ham is such that no wholly satisfactory method of slicing it exists. This statement also applies to legs of lamb and other like cuts of meat.

It is an object of the invention to provide a method and a machine for slicing ham and other joints, which are of exceptional efficiency in operation. Another object of the invention is to prepare ham for the market in a new and superior form.

Millions of spiral cut hams are sold every year, so I believe we can safely say that Hoenselaar accomplished what he set out to do—create an “efficient” ham.

Patent drawing of the ham slicing machine.

Patent drawing by Harry Hoenselaar.

So whatever your traditions are this Thanksgiving, enjoy the holiday!

And remember, when frying a turkey, safety first!

Innovating to Avoid Turkey Trauma

On Thanksgiving, Americans consume about 46 million turkeys. The key to serving a perfect bird is getting the interior to just the right temperature. Too low and you risk getting sick from the undercooked meat. Too high and it’s likely to be dry.

About 30 million turkeys are sold each year with built-in pop-up timers designed to tell cooks when the bird has reached that magic temperature. Today, the pop-up timer market is dominated by Volk Enterprises, founded in the 1950’s by Anthony Volk. When he returned from serving in World War II, Volk began working in a turkey processing plant, which led him to invent a variety of turkey-related products, and ultimately, to start his eponymous company.

Before he invented his pop-up timer, Volk worked with his brother Henry to create a device called the Hok-Lok, which helps to bind the turkey together. The wire contraption, which is meant to be left on the turkey even during cooking, keeps the drumsticks right alongside the turkey breast, and helps make the breast look plumper. Basically, it keeps the whole bird together and looking nice. Though the company has since innovated on the design and created new binding products out of different materials, the Hok-Lok is still used today.

Patent drawing for the Hok-Lok, a Poultry Trussing Device

Patent drawing for the Hok-Lok, a Poultry Trussing Device

After the Hok-Lok, Volk went on to develop a turkey thermometer, but he wasn’t the first to do so. In the 1960’s, a group from the California Turkey Producers Advisory Board began thinking about how to gauge when a turkey was done—but not overdone. The Board was receiving complaints about turkeys being too dry, which they attributed to overcooking. The group began brainstorming ways to combat this, and came up with the idea of an insertable thermometer.

Diagram of a pop-up turkey timer

How a pop-up timer works (via How Stuff Works)

In 1971, after prototyping various solutions, the group filed a patent for a Thermal Indicator “particularly suited for use in indicating temperatures attained by a heated body such as an article of food….” The Indicator was inspired by ceiling sprinklers that activate when they reach a certain temperature. The turkey thermometer consists of four parts: an outer tubular casing, an inner piece that pops up when the appropriate temperature is reached, a spring, and a small amount of metal at the bottom of the tube. The inner pop-up piece is situated in the metal, which is solid before cooking. The metal melts as the turkey cooks, releasing the inner piece and allowing it to pop up.

Patent drawing for the first pop-up turkey timer

Patent drawing for the first pop-up turkey timer

The group established the Dun-Rite Manufacturing Company to make the devices, but in 1973, sold it to 3M. 3M refined the design and continued to make the timers until 1991, when it sold that part of its business to none other than Volk Enterprises.

In the 1970s, Anthony Volk invented his own turkey thermometer. A reverse of the pop-up timer, Volk’s Vue-Temp thermometer was designed to stick out when the turkey was raw and to sink into the bird as it cooked. The design seemed to confuse consumers, however, and Volk soon abandoned that design to develop his own pop-up timer, which was similar to the Dun-Rite/3M device. (It was so similar, in fact, that 3M sued Volk Enterprises in the 1980s for patent infringement. The suit was ultimately settled, however, and both companies continued to produce the timers.)

Patent drawing for Volk’s first Disposable Cooking Thermometer, the Vue-Temp

Patent drawing for Volk’s first Disposable Cooking Thermometer, the Vue-Temp

Though Volk Enterprises dominates the built-in turkey timer market today, there are also pop-up thermometers that can be purchased independently of a bird. The most innovative (at least aesthetically)? This thermometer that is actually shaped like a turkey. Its drumsticks pop up when the meat is done.

Pop-up turkey thermometer shaped like a turkey.

Via Food Beast

Get that clean, baby-face look: Razors at the Smithsonian

Well, we’re just about halfway through November and the streets are filled with beards—all for a good cause. Whether participating in Movember or No Shave November or just being lazy with the razor, November is all about facial hair. The Smithsonian is participating in our own unique way and highlighting historic mustaches, beards, and sideburns. Just check out our Pinterest page, “Smithsonian Staches,” or visit the National Museum of American History’s blog, O Say Can You See, for some truly amazing mustache-related collection items—from photos of Ambrose Burnside to a bicentennial-celebrating beard.

Ambrose Burnside

Perhaps Burnside’s most lasting legacy was the genesis of the term sideburn, the fashionable facial hair style that took its title from his scrambled surname

Beard dyed red, white and blue.

Northwoods Hairstyling of Downey, California, dyed this beard for Gary Sandburg, who later sent it to the Smithsonian. The American bicentennial commemorated the 200th anniversary of the convening of the Second Congress in the Pennsylvania State House (now known as Independence Hall) in Philadelphia, July 4, 1776, and the signing of the Declaration of Independence, which called for separation from Great Britain and the creation of the United States of America.

Come December 1, the razors come out, perhaps to the delight of spouses and significant others. Coincidentally, November hosts some razor-specific invention anniversaries.

On November 15, 1904, King C. Gillette received a patent (No. 775,134) for a razor. “A main object of my invention is to provide a safety-razor in which the necessity of honor or stropping the blade is done away with, thus saving the annoyance and expense involved there in,” reads Gillette’s patent application. By making his blades out of “very thin sheet-steel,” he was able to “produce and sell [his] blades so cheaply that the user may buy them in quantities and throw them away when dull without making the expense thus incurred as great as that of keep the prior blades sharp.” Gillette’s razor was adjustable, to allow for different beard lengths, and featured a safety guard.

Patent drawing for "Razor" by Gillette, 1904.

Patent drawing for “Razor” by Gillette, 1904.

On November 6, 1928, Jacob Schick patented (No. 177,885) a “Shaving Implement.” Whereas Gillette was concerned about creating cheap and replaceable blades, Schick’s invention avoided blades altogether. “The invention is designed to provide a shaving implement that does not require the usual prior application of lather, or its equivalent to the face as the cutting of the hair can be done while the face and hairs are comparatively dry.” When using Schick’s Shaving Implement, “the hairs are snipped off and by repeating the stroke several times the face is cleanly shaven.” Schick’s invention also used air suction, both to draw the hair away from the skin and to suck the cut hairs out of the implement.

Patent drawing for "Shaving Implement" by Schick, 1928.

Patent drawing for “Shaving Implement” by Schick, 1928.

One of the more interesting places to find razors in the collections of the Smithsonian is the National Air and Space Museum. Examples from both Gillette and Schick have gone up into space—astronaut Michael Collins carried shaving equipment made by Gillette on the Apollo 11 mission. More Gillette and Schick items reside in the national collections at NASM and Cooper-Hewitt, National Design Museum.

Gillette razor and shaving cream carried aboard Apollo 11.

This shaving equipment was carried aboard the Apollo 11 mission by astronaut Michael Collins as part of his personal preference kit. Both pieces were readily available in drugstores.
The Personal Preference Kit was so named because all astronauts were permitted one small bag for personal or small items of significance they wished to carry into space.

Inventing an Exhibition, Part III

Over the past two years the Lemelson Center team has been working diligently with exhibition designers at Roto and museum evaluators at Randi Korn and Associates (RK&A) to develop and test our next exhibition, Places of Invention (POI). If you’ve read previous Bright Ideas blog posts, you may know that this exhibition is scheduled to open in the Lemelson Hall of Invention when the National Museum of American History’s West Wing reopens in mid-2015 after extensive renovations.

The POI exhibition will take visitors on a journey through time and place to discover the stories of people who lived, worked, played, collaborated, adapted, took risks, solved problems, and sometimes failed—all in the pursuit of something new. POI features six American communities—Hartford, Connecticut, late 1800s; Hollywood, California, 1930s; Medical Alley, Minnesota, 1950s; the Bronx, New York, 1970s; Silicon Valley, California, 1970s-80s; and Fort Collins, Colorado, 2010s—representing a surprising array of people, places, time periods, and technologies. The exhibition examines what can happen when the right mix of inventive people, untapped resources, and inspiring surroundings come together.

In July 2012 and then again in March 2013 I wrote blog posts reflecting on how our exhibition development process mirrors the inventive process. Continuing the series, I’d like to share more updates here about recent POI project activities, particularly about our latest round of evaluation with visitors.

By May 2013, we completed the exhibition’s conceptual design phase (known at the Smithsonian as the 35% design phase). Roto submitted renderings and design specifications for official review by various Smithsonian departments regarding accessibility, security, lighting, electrical needs, conservation issues, and more. Museum director John Gray and senior staff members reviewed and approved the exhibition content and conceptual design, giving us enthusiastic thumbs up to proceed.

Since then the design development phase (called 65% design) has been underway. During this period the Center’s exhibition team has been collaborating closely with Roto to hone the look and feel of the POI exhibition, focusing on design details, developing more interactive elements, finalizing objects and images, creating exhibit case layouts, and writing exhibition labels.

We conducted round two of formative evaluation with RK&A at the Museum on July 8-10, 2013. Evaluation is funded by the POI project’s National Science Foundation grant. Following up on similar testing done for other interactives during round one in January 2013, the objectives of this evaluation were to explore:

  • how visitors use three prototype interactives;
  • how visitors interpret these prototypes;
  • whether there are any barriers to visitors’ use of the interactives;
  • whether visitors understand the relationships among people-place-invention and 21st century skills (e.g. collaboration, creativity, communication, flexibility, and risk-taking); and
  • how visitors interpret what this POI exhibition is about.
The introductory panel at the entrance to the POI prototyping space in the Museum’s first floor east corridor.

The introductory panel at the entrance to the POI prototyping space in the Museum’s first floor east corridor.

Roto set up three stations of prototype interactives, with minimal contextual materials, in the first floor East corridor of the Museum.  Stanchions and moveable wall panels demarcated the small testing area, with an introductory panel about the exhibition displayed right outside. RK&A evaluators recruited walk-in adult visitors who were alone or in groups of adults and children to participate in the study.

Inside the prototyping area on day one of testing.

Inside the prototyping area on day one of testing.

The activities we tested were:

  • an interactive about how early pacemakers worked for the 1950s Medical Alley, MN case study about the invention of the external, wearable pacemaker;
  • an activity to try out DJ scratching as part of the 1970s Bronx, NY case study about the birth of hip-hop music;
  • an activity for the exhibition’s Hub called Build Your Own Place of Invention, where visitors were encouraged to think about the conditions needed for their hypothetical place of invention, such as what people, spaces, or resources they would need.

For three days, the RK&A team observed and interviewed 48 groups of visitors (78 adults and 55 children ages 6-17) as they tried the different components without any coaching. Roto and Lemelson Center staff members were on hand to fix any mechanical issues and generally observe visitors as unobtrusively as possible. At the end of each testing day, we met with RK&A to debrief about visitor actions and interview responses and then made tweaks to the interactives for the next day’s testing.

The DJ scratching interactive on day 3 of testing

The DJ scratching interactive on day 3 of testing.

In August, RK&A produced a final report based on the data they collected, providing information about their interviews and specific recommendations for further interactives development.  The report addressed both successes and challenges, including what visitors considered the most enjoyable, least enjoyable, confusing, and intriguing aspects of the exhibit interactives, and their understanding (or lack thereof) of the exhibition messages. Finding that “place” is still conceptually difficult for many visitors, RK&A shared recommendations about how and where to define and visually represent place in the exhibition to reinforce our interpretation of “place” and its relationship to inventors and invention.

Visitors trying out the pacemaker interactive on day three of testing.

Visitors trying out the pacemaker interactive on day three of testing.

The evaluation process has been extremely informative, productive, and—for me as the project director—essential. Although the exhibition budget is tight, the money spent now on formative evaluation means the designers and fabricators will need less time and money to tweak and revamp the exhibition components in the future. Observing and talking with visitors on the Museum floor really pushed the Lemelson Center and Roto to rethink assumptions about how they use and interpret our creations. The resulting tweaking process—incrementally during the testing days and ongoing since then as we continue to build upon the report’s recommendations—will make the final exhibition much more meaningful and engaging for our visitors.

The Build Your Own Place of Invention activity on day three of testing.

The Build Your Own Place of Invention activity on day three of testing.

Who Invented the Super Bowl Trophy?

After working at The Lemelson Center for a while, it’s not hard to see that invention is all around us. In the news, in our interests, and in our daily life, it’s easy to find the invention story behind the objects and people who we encounter.

For example, I’ve been watching quite a bit of football since the start of the season. I love keeping up with my team, the Seahawks, and following along with the local team here in Washington, D.C. Last year my colleague wrote about innovation in football helmet technology designed to keep more players safe from head injuries, which is still a relevant conversation. Looking to the future, lots of fans are anticipating the 2014 Super Bowl, myself included. Which got me wondering: who invented the Super Bowl trophy?

According to Westchester Magazine, a publication from Westchester, New York, the idea of having a trophy came in 1966 from then NFL commissioner Pete Rozelle. He contacted Tiffany & Co., where he began collaborating with the head of design, Oscar Reidner.

The Super Bowl Trophy

Screenshot from Tiffany.com

Apparently Reidner had never watched a football game or held a football, so he immediately bought one at a toy store. He then cut up a cereal box for a prototype and met for lunch with Rozelle, where he sketched his idea on a cocktail napkin. Et voila, a major American icon was invented. Tiffany & Co. continues to handcraft a new trophy every year, which is incredible!

A silversmith at Tiffany & Co. works on the trophy.

A silversmith at Tiffany & Co. works on the trophy. Screenshot from NJ.com

Next time I covet that pair of diamond earrings from Tiffany’s, I’m sure I’ll remember that they also produce a football-related invention. It’s fascinating to continue finding invention stories wherever I look.