Faster, higher, stronger: Science and engineering behind the Olympic Winter Games

“Citius, Altius, Fortius”—translated as “faster, higher, stronger”—is the motto of the modern Olympic Games. This phrase could also sum up the goals of scientists, engineers, and other inventors working with athletes to develop new and improved sports equipment, clothing, and even technical skills. In the Olympic games, viewers around the world see the latest science and technology in action as skiers, skaters, and sledders take to the slopes, rinks, and tracks in Sochi, Russia, to compete for quadrennial Olympics glory. This post first appeared on O Say Can You See.

Citius, Altius, Fortius; Faster, Higher, Stronger

Citius, Altius, Fortius; Faster, Higher, Stronger

To enhance your TV watching from the couch, check out this great series of free short videos about Science and Engineering of the Olympic Winter Games 2014 produced by the National Science Foundation (NSF) in partnership with NBC Learn.

As summarized in the introduction, “this enlightening 10-part video collection, narrated by NBC Sports’ Liam McHugh, delves into the physics, engineering, chemistry, design and mathematics behind the ‘world’s foremost sporting event.’” The videos feature U.S. Olympians and Paralympians whose names you may know, alongside scientists and engineers whose important research has been funded by NSF. Complementary educational materials are provided for the budding scientists and engineers in our lives.

A poster from the first Winter Olympic Games which were held in Chamonix, France, in 1924. Via Wikimedia Commons.

A poster from the first Winter Olympic Games which were held in Chamonix, France, in 1924. Via Wikimedia Commons.

Personally, I am fascinated by the Winter Olympics, the first of which was held in Chamonix, France, in 1924. Generally I favor the figure skating and alpine skiing part because I’ve experienced the pain and pleasure of trying them myself—so I played those videos first.

Skating is all about physics, which Olympic hopefuls like Gracie Gold and Ashley Wagner make look easy as they gracefully jump and spin on the ice. The skiing video features Julia Mancuso, who has won multiple Olympic medals including a bronze in Sochi, and Heath Calhoun, an Iraq veteran and 2010 and 2014 Paralympics contender. Also stars are the scientists and engineers behind them, like Dr. Kam Leang of the University of Nevada, Reno, who uses nano-scale carbon tubes to help reduce vibration in skis.

A commemorative stamp for the 1932 Winter Olympic Games held in Lake Placid, New York. It is in the collection of the Smithsonian's National Postal Museum.

A commemorative stamp for the 1932 Winter Olympic Games held in Lake Placid, New York. It is in the collection of the Smithsonian’s National Postal Museum.

Of course, during the Olympics TV marathon, I often end up watching less popular sports, too, that are sometimes ignored in the U.S. during intervening years. The video about the engineering behind bobsledding, featuring U.S. team members Steve Holcomb and Steve Langton, raised my interest in watching that more carefully. I didn’t realize that bobsledding is one of the most dangerous sports, and the video illustrates numerous issues about weight, stability, speed, and drag that engineers must address to meet the sport’s official requirements.

Bonnie Blair's speed skin from the 1992 Winter Olympics in Albertville, France

Bonnie Blair’s speed skin from the 1992 Winter Olympics in Albertville, France.

Check out Shani Davis’ cutting-edge speed skating suit in the video clip “Engineering Competition Suits.” Perhaps one day, he will donate his suit to the Museum to join Bonnie Blair’s speed skating suit from the 1992 Olympics, which was cutting-edge in its time. We also have a pair of Apolo Anton Ohno’s speed skates among other great Olympics-related objects in the Museum’s sports collections. Doubtless NBC Olympics coverage will mention more than once that Blair and Ohno are the most decorated U.S. Winter Olympic athletes, with six and eight medals respectively, while Davis has won two gold medals at the last two Olympics and is competing in Sochi for more.

Shaun White's outfit and snowboard.

Shaun White’s outfit and snowboard.

The short video about the physics of snowboarding featuring Shaun White reminded me a lot of skateboarding, which the Lemelson Center for the Study of Invention and Innovation featured during Innoskate 2013, albeit on a much smaller, temporary half pipe built simply as a demonstration stage. Interestingly, White is both a medal-winning skateboarder and snowboarder and competed in the latter sport in Sochi. I should note that the Museum’s sports collection includes a Burton snowboard donated by White as well as an accessible snowboard invented by then-students Nathan Connolly and Matt Capozzi, who were featured in the Lemelson Center’s Invention at Play exhibition.

An accessible snowboard invented by then-students Nathan Connolly and Matt Capozzi, who were featured in the Lemelson Center's Invention at Play exhibition.

An accessible snowboard invented by then-students Nathan Connolly and Matt Capozzi, who were featured in the Lemelson Center’s Invention at Play exhibition. (0174706).

If this year’s NSF-NBC video series just whets your appetite, be sure to watch their previous collaboration, the “Science of the Olympic Winter Games 2010,” with informational segments about the science behind skiing, ski jumping, ice skating, and more.

We can thank Baron Pierre de Coubertin for reinventing the Olympic Games starting in 1896. An aristocratic French educator, he was inspired by ancient Greek culture and also the opportunity to use sports as a way to encourage intercultural communication and trust. The three core values of the Olympic Movement are Excellence, Respect, and Friendship, the latter defined in part as “build[ing] a peaceful and better world thanks to sport, through solidarity, team spirit, joy, and optimism.” Hopefully this year’s games in Sochi will live up to these values that helped spawn this international sports festival 118 years ago.

U.S. stamp commemorating the centennial of the Olympic Games.

U.S. stamp commemorating the centennial of the Olympic Games.

Remembering Apple’s “1984” Super Bowl ad

Today marks the 30th anniversary of Apple’s famous “1984” television ad that aired on January 22, 1984 during the third quarter of the Super Bowl XVIII between the Los Angeles Raiders and Washington Redskins. Historian Eric Hintz describes how the “1984” ad and the introduction of the Apple Macintosh were key milestones both in the history of computing and the history of advertising.

The Super Bowl is a cultural event that attracts the attention of more than just football fans. In 2013, Super Bowl XLVII was the third most watched telecast of all time, with an average viewership of 108.7 million people. With so many eyeballs tuned in, advertisers bring out some of their best work and casual fans tune in for the groundbreaking TV commercials as much as for the game. Who could forget Steelers Hall of Famer “Mean” Joe Greene selling Coca-Cola (1979) or the Budweiser guys coining “Wassuuuup?!?” (2000) as everyone’s new favorite catchphrase? However, Apple’s “1984” ad during Super Bowl XVIII is arguably the most famous Super Bowl commercial of all time.

In 1983, the personal computing market was up for grabs. Apple was selling its Apple II like hotcakes but was facing increasing competition from IBM’s PC and “clones” made by Compaq and Commodore. Meanwhile, Apple, led by Steve Jobs, was busy developing its new Macintosh computer. Remember that in 1983, most businesses and governments still employed large, expensive, and technically intimidating mainframes. And while the first personal computers of the early 1980s were smaller and less intimidating, they still featured black screens with green text-based commands like C:\> run autoexec.bat.

Drawing inspiration from the pioneering Xerox Alto and improving on the underperforming Apple Lisa, Jobs and the Apple team built the Apple Macintosh with several revolutionary new features we now take for granted. A handheld input device called a “mouse.” A graphical user interface with overlapping “windows” and menus. Clickable pictures called “icons.” Cut-copy-paste editing. In short, Jobs and his team were creating an “insanely great” personal computer that was intuitive and easy to use—one he hoped would shake-up the PC market. At the same time, Apple had recently lured marketing whiz John Sculley away from Pepsi to be the firm’s new chief executive. Sculley, who had masterminded the “Pepsi Generation” campaign, raised Apple’s ad budget from $15 million to $100 million in his first year.

Apple Macintosh (“classic” 128K version), 1984, catalog number 1985.0118.01, from the National Museum of American History.

Apple Macintosh (“classic” 128K version), 1984, catalog number 1985.0118.01, from the National Museum of American History.

Apple hired the Los Angeles advertising firm Chiat/Day to launch the Macintosh in early 1984; the account team was led by creative director Lee Clow, copywriter Steve Hayden, and art director Brent Thomas. The trio developed a concept inspired by George Orwell’s dystopian novel, 1984, in which The Party, run by the all-seeing Big Brother, kept the proletariat in check with constant surveillance by the Thought Police. In the ad, IBM’s “Big Blue” would be cast as Big Brother, dominating the computer industry with its dull conformity, while Apple would re-write the book’s ending so that the Macintosh metaphorically defeats the regime. To direct the commercial, Chiat/Day hired British movie director Ridley Scott who’d perfected the cinematic look and feel of dystopian futures in Alien (1979) and Blade Runner (1982). The 60-second mini-film was shot in one week at a production cost of about $500,000. Two hundred extras were paid $125 a day to shave their heads, march in lock-step, and listen to Big Brother’s Stalinist gibberish. Shot in dark, blue-gray hues to evoke IBM’s Big Blue, the only splashes of color were the bright red running shorts of the protagonist, an athletic young woman who sprints through the commercial carrying a sledgehammer, and Apple’s rainbow logo. The commercial never showed the actual computer, but ended with a tease: “On January 24th, Apple Computer will introduce Macintosh. And you’ll see why 1984 won’t be like ‘1984.’”

Scenes from Apple’s “1984” Super Bowl advertisement.  From Folklore.org.

Scenes from Apple’s “1984” Super Bowl advertisement. From Folklore.org.

1984Girl_fromFolkloreDotOrg

When shown the finished ad in late 1983, Apple’s board members hated it. Sculley, the Apple CEO, instructed Chiat/Day to sell back both the 30 and 60-second time slots they’d purchased from CBS for $1 million, but they were only able to unload the 30 second slot.  Apple was faced with the prospect of eating the $500,000 production costs of an ad that could really only air during calendar year 1984, so it swallowed hard and let the ad run once during the third quarter of the Super Bowl. Some 43 million Americans saw the ad, and when the football game returned, CBS announcers Pat Summerall and John Madden asked one another, “Wow, what was that?”

The ad, of course, was a sensation. The commercial’s social and political overtones held particular resonance in the mid-1980s, as the United States and Soviet Union were still engaged in an ideological Cold War. And, like Lyndon Johnson’s famous “Daisy” ad from the 1964 presidential campaign, the ad aired only once in primetime, but was replayed again and again on the network news that evening as the ad itself became a buzz-worthy source of free publicity. But even the mystique of the single airing wasn’t entirely true. Chiat/Day had quietly run the ad one other time, at 1 a.m. on December 15, 1983 on KMVT in Twin Falls, Idaho, so that the advertisement qualified for the 1983 advertising awards.  As expected, the ad won several prestigious awards, including the Grand Prize at the Cannes International Advertising Festival (1984) and Advertising Age’s 1980s “Commercial of the Decade.” But the ad’s most enduring legacy is that it cemented the Super Bowl as each year’s blockbuster moment for advertisers and their clients.

While the ad aired during the Super Bowl on January 22, it merely pointed to Macintosh’s official debut two days later. On January 24, 1984, Apple held its annual shareholders meeting at the Flint Center auditorium on the campus of De Anza College, just a block from Apple’s offices in Cupertino, California. After dispensing with the formalities of board votes and quarterly earnings statements, the real show began. Steve Jobs walked on stage in a double-breasted suit and bow tie and rallied the troops by tweaking his chief rival: “IBM wants it all and is aiming its guns on its last obstacle to industry control, Apple.  Will Big Blue dominate the entire computer industry, the entire information age?  Was George Orwell right?”

Jobs then presented perhaps the greatest new product demonstration in history. Jobs walked over to a black bag, unzipped it, and set up the Macintosh to wild applause.  Then Jobs inserted a floppy disk and started the demonstration of the Mac’s windows, menus, fonts, and drawing tools, all set to the stirring theme from Chariots of Fire. Then, the Mac spoke for itself: “Hello, I am Macintosh…”

So when you watch the Super Bowl on February 2 this year, it’s possible that the ads will overshadow the game. And for that you can thank Apple’s Macintosh, Chiat/Day and “1984.”

Innovating New Traditions

As Thanksgiving approaches, our thoughts naturally turn to traditions—national traditions like the Macy’s Thanksgiving Day Parade and our own personal traditions, which in my family means kielbasa and apple pie, going to the local Christmas tree farm, and my family members pretending to be shocked when I decline a serving of carrots for the 28th year in a row. (And, of course, my mother’s mashed potatoes, over which I rhapsodized in a previous post.)

Woodcut of a turkey

Woodcut, The Marchbanks Calendar–November by Harry Cimino. Smithsonian American Art Museum.

We all have traditions, but where did they come from? When we deep-fry the turkey or add a spiral ham to the menu, it may not seem particularly innovative. But the technology behind these yummy traditions had to come from somewhere. While doing some Thanksgiving-inspired Googling, I came across this fun video from History on the invention of deep-fried turkeys, turduckens, and honey baked hams:

While we may not know who invented the deep-fried turkey, we can take a look at Harry Hoenselaar’s patent (#2470078A) for an “apparatus for slicing ham on the bone.” Hoenselaar’s invention was ingeniously created out of various objects found around his home—a pie tin, brackets, a hand drill, and a broom handle, to name a few. The patent application reads:

In the meat industry there is a large market for sliced meats, particularly for ham slices, but the bone construction and the shape of a ham is such that no wholly satisfactory method of slicing it exists. This statement also applies to legs of lamb and other like cuts of meat.

It is an object of the invention to provide a method and a machine for slicing ham and other joints, which are of exceptional efficiency in operation. Another object of the invention is to prepare ham for the market in a new and superior form.

Millions of spiral cut hams are sold every year, so I believe we can safely say that Hoenselaar accomplished what he set out to do—create an “efficient” ham.

Patent drawing of the ham slicing machine.

Patent drawing by Harry Hoenselaar.

So whatever your traditions are this Thanksgiving, enjoy the holiday!

And remember, when frying a turkey, safety first!

Innovating to Avoid Turkey Trauma

On Thanksgiving, Americans consume about 46 million turkeys. The key to serving a perfect bird is getting the interior to just the right temperature. Too low and you risk getting sick from the undercooked meat. Too high and it’s likely to be dry.

About 30 million turkeys are sold each year with built-in pop-up timers designed to tell cooks when the bird has reached that magic temperature. Today, the pop-up timer market is dominated by Volk Enterprises, founded in the 1950’s by Anthony Volk. When he returned from serving in World War II, Volk began working in a turkey processing plant, which led him to invent a variety of turkey-related products, and ultimately, to start his eponymous company.

Before he invented his pop-up timer, Volk worked with his brother Henry to create a device called the Hok-Lok, which helps to bind the turkey together. The wire contraption, which is meant to be left on the turkey even during cooking, keeps the drumsticks right alongside the turkey breast, and helps make the breast look plumper. Basically, it keeps the whole bird together and looking nice. Though the company has since innovated on the design and created new binding products out of different materials, the Hok-Lok is still used today.

Patent drawing for the Hok-Lok, a Poultry Trussing Device

Patent drawing for the Hok-Lok, a Poultry Trussing Device

After the Hok-Lok, Volk went on to develop a turkey thermometer, but he wasn’t the first to do so. In the 1960’s, a group from the California Turkey Producers Advisory Board began thinking about how to gauge when a turkey was done—but not overdone. The Board was receiving complaints about turkeys being too dry, which they attributed to overcooking. The group began brainstorming ways to combat this, and came up with the idea of an insertable thermometer.

Diagram of a pop-up turkey timer

How a pop-up timer works (via How Stuff Works)

In 1971, after prototyping various solutions, the group filed a patent for a Thermal Indicator “particularly suited for use in indicating temperatures attained by a heated body such as an article of food….” The Indicator was inspired by ceiling sprinklers that activate when they reach a certain temperature. The turkey thermometer consists of four parts: an outer tubular casing, an inner piece that pops up when the appropriate temperature is reached, a spring, and a small amount of metal at the bottom of the tube. The inner pop-up piece is situated in the metal, which is solid before cooking. The metal melts as the turkey cooks, releasing the inner piece and allowing it to pop up.

Patent drawing for the first pop-up turkey timer

Patent drawing for the first pop-up turkey timer

The group established the Dun-Rite Manufacturing Company to make the devices, but in 1973, sold it to 3M. 3M refined the design and continued to make the timers until 1991, when it sold that part of its business to none other than Volk Enterprises.

In the 1970s, Anthony Volk invented his own turkey thermometer. A reverse of the pop-up timer, Volk’s Vue-Temp thermometer was designed to stick out when the turkey was raw and to sink into the bird as it cooked. The design seemed to confuse consumers, however, and Volk soon abandoned that design to develop his own pop-up timer, which was similar to the Dun-Rite/3M device. (It was so similar, in fact, that 3M sued Volk Enterprises in the 1980s for patent infringement. The suit was ultimately settled, however, and both companies continued to produce the timers.)

Patent drawing for Volk’s first Disposable Cooking Thermometer, the Vue-Temp

Patent drawing for Volk’s first Disposable Cooking Thermometer, the Vue-Temp

Though Volk Enterprises dominates the built-in turkey timer market today, there are also pop-up thermometers that can be purchased independently of a bird. The most innovative (at least aesthetically)? This thermometer that is actually shaped like a turkey. Its drumsticks pop up when the meat is done.

Pop-up turkey thermometer shaped like a turkey.

Via Food Beast

Get that clean, baby-face look: Razors at the Smithsonian

Well, we’re just about halfway through November and the streets are filled with beards—all for a good cause. Whether participating in Movember or No Shave November or just being lazy with the razor, November is all about facial hair. The Smithsonian is participating in our own unique way and highlighting historic mustaches, beards, and sideburns. Just check out our Pinterest page, “Smithsonian Staches,” or visit the National Museum of American History’s blog, O Say Can You See, for some truly amazing mustache-related collection items—from photos of Ambrose Burnside to a bicentennial-celebrating beard.

Ambrose Burnside

Perhaps Burnside’s most lasting legacy was the genesis of the term sideburn, the fashionable facial hair style that took its title from his scrambled surname

Beard dyed red, white and blue.

Northwoods Hairstyling of Downey, California, dyed this beard for Gary Sandburg, who later sent it to the Smithsonian. The American bicentennial commemorated the 200th anniversary of the convening of the Second Congress in the Pennsylvania State House (now known as Independence Hall) in Philadelphia, July 4, 1776, and the signing of the Declaration of Independence, which called for separation from Great Britain and the creation of the United States of America.

Come December 1, the razors come out, perhaps to the delight of spouses and significant others. Coincidentally, November hosts some razor-specific invention anniversaries.

On November 15, 1904, King C. Gillette received a patent (No. 775,134) for a razor. “A main object of my invention is to provide a safety-razor in which the necessity of honor or stropping the blade is done away with, thus saving the annoyance and expense involved there in,” reads Gillette’s patent application. By making his blades out of “very thin sheet-steel,” he was able to “produce and sell [his] blades so cheaply that the user may buy them in quantities and throw them away when dull without making the expense thus incurred as great as that of keep the prior blades sharp.” Gillette’s razor was adjustable, to allow for different beard lengths, and featured a safety guard.

Patent drawing for "Razor" by Gillette, 1904.

Patent drawing for “Razor” by Gillette, 1904.

On November 6, 1928, Jacob Schick patented (No. 177,885) a “Shaving Implement.” Whereas Gillette was concerned about creating cheap and replaceable blades, Schick’s invention avoided blades altogether. “The invention is designed to provide a shaving implement that does not require the usual prior application of lather, or its equivalent to the face as the cutting of the hair can be done while the face and hairs are comparatively dry.” When using Schick’s Shaving Implement, “the hairs are snipped off and by repeating the stroke several times the face is cleanly shaven.” Schick’s invention also used air suction, both to draw the hair away from the skin and to suck the cut hairs out of the implement.

Patent drawing for "Shaving Implement" by Schick, 1928.

Patent drawing for “Shaving Implement” by Schick, 1928.

One of the more interesting places to find razors in the collections of the Smithsonian is the National Air and Space Museum. Examples from both Gillette and Schick have gone up into space—astronaut Michael Collins carried shaving equipment made by Gillette on the Apollo 11 mission. More Gillette and Schick items reside in the national collections at NASM and Cooper-Hewitt, National Design Museum.

Gillette razor and shaving cream carried aboard Apollo 11.

This shaving equipment was carried aboard the Apollo 11 mission by astronaut Michael Collins as part of his personal preference kit. Both pieces were readily available in drugstores.
The Personal Preference Kit was so named because all astronauts were permitted one small bag for personal or small items of significance they wished to carry into space.

Who Invented the Super Bowl Trophy?

After working at The Lemelson Center for a while, it’s not hard to see that invention is all around us. In the news, in our interests, and in our daily life, it’s easy to find the invention story behind the objects and people who we encounter.

For example, I’ve been watching quite a bit of football since the start of the season. I love keeping up with my team, the Seahawks, and following along with the local team here in Washington, D.C. Last year my colleague wrote about innovation in football helmet technology designed to keep more players safe from head injuries, which is still a relevant conversation. Looking to the future, lots of fans are anticipating the 2014 Super Bowl, myself included. Which got me wondering: who invented the Super Bowl trophy?

According to Westchester Magazine, a publication from Westchester, New York, the idea of having a trophy came in 1966 from then NFL commissioner Pete Rozelle. He contacted Tiffany & Co., where he began collaborating with the head of design, Oscar Reidner.

The Super Bowl Trophy

Screenshot from Tiffany.com

Apparently Reidner had never watched a football game or held a football, so he immediately bought one at a toy store. He then cut up a cereal box for a prototype and met for lunch with Rozelle, where he sketched his idea on a cocktail napkin. Et voila, a major American icon was invented. Tiffany & Co. continues to handcraft a new trophy every year, which is incredible!

A silversmith at Tiffany & Co. works on the trophy.

A silversmith at Tiffany & Co. works on the trophy. Screenshot from NJ.com

Next time I covet that pair of diamond earrings from Tiffany’s, I’m sure I’ll remember that they also produce a football-related invention. It’s fascinating to continue finding invention stories wherever I look.

Inventing the Surveillance Society

We are being watched. Anytime we enter a building, place a phone call, swipe a credit card, or visit a website, our actions are observed, recorded, and analyzed by commercial and government entities. Surveillance technologies are omnipresent—a fact underscored by the Boston Marathon bombing dragnet and Edward Snowden’s revelations of widespread domestic surveillance by the National Security Agency earlier this year. It’s clear that we live in a “surveillance society” driven by a range of innovations, from closed-circuit TV cameras to sophisticated data mining algorithms. But how did our surveillance society emerge, and what is the effect of ubiquitous surveillance on our everyday lives?

surveillance-header

To tackle these questions, the Lemelson Center is presenting Inventing the Surveillance Society, a symposium that explores the role of invention and technology in a modern world where our actions (and transactions) are constantly being monitored. The symposium will bring together scholars, inventors, policymakers, members of the media, and the public to discuss the historical evolution of surveillance technologies, and their contemporary societal implications. The symposium will be held on Friday, October 25 at the Smithsonian’s National Museum of American History in Washington, D.C.  All events are free and open to the public and will be available via live webcast.

As I’ve told friends and colleagues about our upcoming symposium, I’ve encountered some mild surprise that a history museum would be convening this kind of conversation. Let me provide a few reasons why the Lemelson Center and the National Museum of American History are the right place for this discussion and describe how our approach will be different than what you typically see on the 24-hour news cycle.

The President said we should do it. As a Smithsonian (i.e. federal) employee, I listened closely when my boss, President Obama, made remarks on the heels of Snowden’s revelations about the NSA’s domestic surveillance programs. In his June 7 news conference, the President suggested that the American public will need to “discuss and debate” the “balance between the need to keep the American people safe and our concerns about privacy.” With our symposium, we are providing a free, public forum for exactly this kind of discussion here at the Smithsonian.

Widespread public access. Think tanks and university department host these kinds of programs all the time, but they tend to operate at a somewhat rarified level; unless you’re a scholar or policymaker, it can be tough to get on the invitation list. Here at the museum, admission is free and we welcome all comers. And if you’re not in D.C., then you can tune in via a live webcast. By hosting a very public event, we believe we’re fulfilling our Smithsonian mission—“the increase and diffusion of knowledge”—in a way that will be accessible to the broadest number of people. We hope you’ll participate in the discussion.

Current events in historical perspective. Over the last several months, questions about surveillance have been debated daily in newspapers and on current affairs news programs. They rightly focus on breaking news—that’s their job. However, the emergence of the surveillance society did not occur overnight. As a museum, we can present the long view on surveillance and hopefully uncover some insights that will illuminate our current era.

Trade catalog for "The Detectifone", 1917

As demonstrated by our museum collections, surveillance technology has a long history. Trade catalog, Carl Anderson Electric Corporation, 1917, Smithsonian Institution Libraries

Surveillance is not new. Since ancient times, kings and pharaohs have dispatched spies to gather intelligence on things happening both inside and outside the kingdom. And over the last 150 years or so, those direct, human observations have been augmented by a range of new inventions that have improved the watchers’ ability to capture, store, and analyze their observations. Yet, a symposium dedicated only to the history of surveillance wouldn’t be very relevant, so we plan to explore both the historical emergence of the surveillance society and its contemporary implications. Today’s news is tomorrow’s history, so it’s crucial that the museum convene conversations like this to explore and document current topics like surveillance that will be historically significant in 50, 100, or even 200 years.

Focus on invention and technology.  In the news, the conversation about surveillance tends to be framed in terms of legal and ethical issues: how do we balance national security and personal liberty?  However, few pundits stop to consider the technological basis of the surveillance society. As with past symposia that have explored topics likes spaceflight, food, and sustainable architecture, the Lemelson Center’s 2013 program will specifically examine the surveillance society through the lens of invention and technology.

CCTV Trade Catalog, 1989,

Trade catalog, Crest Electronics, Inc., 1989, Smithsonian Institution Libraries

At its heart, modern surveillance is fundamentally driven by technology. For example, the invention of the daguerreotype and the phonograph in the 19th century created new kinds of recorded evidence that were more trustworthy than faulty memories or hearsay.  Similarly, 20th century office technologies like the dossier, the carbon form in triplicate, and the filing cabinet were mundane (but crucial) innovations that enabled government and commercial bureaucracies to gather, store, and retrieve information about us. Today, autonomous cameras record your entrance into a building—or through a red-light intersection. Massive data warehouses store terabytes of information about our credit card transactions and website clickstreams, so that sophisticated data mining algorithms at Amazon and Netflix can suggest the kinds of books and movies it believes we would enjoy. Clearly, the advance of technology has expanded the scope and strategic value of surveillance. Accordingly, the symposium’s emphasis on invention should provide new insights that go beyond the familiar privacy-security debate.

So that’s the advance scoop on Inventing the Surveillance Society, our annual Lemelson Center symposium, coming to the National Museum of American History on Friday, October 25. Check out the program here—we hope you’ll attend or check out the live webcast! In the coming weeks, I’ll say more about our featured speakers and what they’ll be discussing—stay tuned!

What We’re Reading

A round-up of articles we found interesting, funny, disturbing, or otherwise distracting this week….

Titanium Bullets, Rocket Sleds, and C-4: How the U.S. Tested the Safety of Nuclear Batteries on Wired. The title is pretty self-explanatory. Check out the awesome pictures and technical drawings to find out how the Department of Energy went about “smash[ing] them, blow[ing] them up, shoot[ing] them and break[ing] them.”

Hopkins researchers on Snowden, NSA leak on WAMR-ABC2. This was an interesting take on the privacy v. security debate—that the government is setting standards that open secure systems to backdoor hacking. And especially interesting given our upcoming symposium, Inventing the Surveillance Society (October 25).

CDC Threat Report: “We Will Soon Be in a Post-Antibiotic Era” also on Wired. This article couldn’t help but get us thinking about the innovations that will be needed if and when antibiotics no longer meet our healthcare needs.

Why Today’s Inventors Need to Read More Science Fiction on The Atlantic. A new class at MIT “mines these “fantastic imaginings of the future” for analysis of our very real present.” Building prototypes based on science fiction? Sign us up!

What were your “must-read” technology/innovation articles this week?

 

Twin Towers of Living Light

Tonight, at sundown, two square shafts of blue light will ascend into the heavens from the ground of New York City, symbolizing the former towers of the World Trade Center.  These shafts of light shine in tribute to the men, women, and children killed during the terrorist attack on September 11, 2001.

Tribute in Light.

Tribute in Light. Photo by Flickr user beanhead4529.

“Tribute in Lights” is the product of artists Julian La Verdiere and Paul Myoda. It consists of 88 7,000-watt xenon spotlights in the shape of two squares that shine four miles into the sky—the strongest shaft of light ever projected vertically into the sky. Xenon lights are the same type used in such common devices as strobe lights, camera flash bulbs, and IMAX and digital film projectors. The lights can be seen from over 60 miles away.

It takes a lot of energy to power the generators used for the lights. In an effort to be more environmentally conscious, the generators are fueled with biodiesel fuel made from cooking oil that is collected from local restaurants. Contrary to what you may think, the ideal atmospheric conditions for the lights are a misty fog—the light needs to reflect off of particles and moisture in the air. They are truly an achievement of contemporary lighting techniques.

The technology behind this tribute is a feat, but the artists behind them originally had an even more cutting-edge project planned for the World Trade Center. La Verdiere and Myoda were exploring the possibilities of using bioluminescence to create beams of light. Their studio was located within World Trade Center 1 (the north tower), on the 91st floor. In 1999 they began to explore the possibility of creating a bioluminescent beacon of light that would be emitted from the radio tower of the north tower.

The light they planned to use is based on innovative research into bioluminescence—the natural light emitted by some living organisms (“living light”). The artists’ goal was to develop a way to amplify and control the bioluminescence of some of these organisms in order to use them to beam light. One organism in particular—sea plankton (dinoflegellates), which emits a blue light when it is agitated in the water—seemed promising.

An example of bioluminescence.

Bioluminescing Dinoflagellate. A biological clock triggers bioluminescence in the dinoflagellate Pyrocystis fusiformis. At dusk, cells produce the chemicals responsible for its light. Photo by E. Widder, ORCA, www.teamorca.org, via the National Museum of Natural History.

This research took place in the invertebrates department of the American Museum of Natural History in New York City. Over the next six months, the artists selectively bred different planktons in order to create the brightest and largest bioluminescent plankton possible. They also learned how to control when the plankton rested and when they emitted light. They planned to use the amplified light of a single bioluminescent celled organism as a “bioluminescent beacon” that would shine like a spotlight from the world trade tower.  The “bioluminescent beacon” was slated to be unveiled in spring 2002.

With preliminary work completed, La Verdiere and Myoda moved out of their World Trade Center 1 studio several weeks before September 11. A desire to mark the six month anniversary of the terrorist attach resulted in their work being put to a modified use. While the xenon spotlights used in “Tribute in Lights” replaced the bioluminescent concept, there are undeniably similarities in the projects.

Using bioluminescent light for human lighting solutions is something still being explored by many. A team of scientists from Syracuse University are attempting to create lighting using the bioluminescence of fireflies. The team believes that their bioluminescent lighting system could be 20 to 30 times more energy efficient than any previous systems. Also, bioluminescent bacteria are also being used by Philips Designs to produce lighting that will both consume waste and emit light. Research projects on human uses for bioluminescence are at the cutting-edge of energy efficient lighting experimentation. As research in this field advances, perhaps La Verdiere and Myoda’s work will truly come full circle and, in the future, living organisms may fuel the light emitted from the National September 11 Memorial. Intended to symbolize lost life, I can’t image a more fitting place for two towers of “living light.”

For more information on how the “Biolulminescent Beacon” please go to “The Genesis of the TRIBUTE IN LIGHT” by Julian LaVerdiere and Paul Myoda.

Tailgating: Grilling, Drinking, and Inventing

With summer winding down, most people are looking forward to cooler fall temperatures. However, a new season of football is just heating up and you know what that brings: tailgating.

Tailgaiting

Photo via bishs.com.

Tailgating is a time-honored tradition of gathering together and celebrating one’s team before, during, and—if everyone’s still standing—after a football game. Literally, the term “tailgate” refers to the back part of a truck or heavy duty vehicle. Tailgating, or a tailgate party, is therefore what happens when people socialize around the open tailgate.

Now, as anyone who has been to a sporting event knows, tailgating is where it’s at. Meeting up with friends to reminisce over last year’s wins (or losses), trash talking the other team, and imbibing a few tasty beverages are all part of the festivities.

So what tailgating inventions are out there?

Let’s start with the main event of tailgating—eating and drinking. The Tailgate PartyMate was invented by a fan who was tired of having to haul tables to prepare food, in addition to being frustrated that he never had enough room for everything. So, he invented a table system that hooks onto the trailer hitch of a truck. No more having to haul cumbersome tables or deal with too little space!

a table system hooked onto the trailer hitch of a truck

Photo via tailgatepartymate.com.

Now, the second most fun thing about a tailgate party is all the great games to play—washertoss, horseshoes, wiffle ball, and more. But what happens if you want to enjoy the refreshments and play a game at the same time? That’s where the Scorzie comes in. This handy invention keeps your drink cool and keeps your game score tallied, all in one convenient place.

A drink koozie that keeps score for you.

Photo via scorzie.com

And then there’s what Popular Science Magazine calls “the sports fan’s dream”: a totally tricked-out grill. Lance Greathouse, a dental-laser repairman, invented a grill that’s a “fire-spewing, beer-chilling machine that can drive from one parking-lot party to the next.” Apparently, he had seen tailgating setups that included separate components, but never combined them all together. So, from out of his head popped his tailgating monster, which has a grill and refrigerator on opposite ends, with a satellite stereo, MP3 player, speakers, and a live TV feed of what’s cooking in between. Add on a steel cylinder that shoots fireballs into the air for fun, and I’d say you’ve got your Sunday afternoon all set.

A grill that also has a refrigerator, sound system, and fire-ball shooting abilities.

Photo via popsci.com

I don’t know about you, but I’m ready for this year’s gridiron extravaganza. Bring on the grilled meat and the fireballs. Bring on the games and keeping score and keeping drinks cool. Bring on hooking stuff up to the back of the truck and making even more space for mom’s seven-layer dip. Looks like I’ve got plenty of inventions to help me enjoy my football games.